Confidence Interval Calculation Example

The average height of a random sample of 400 people from a city is 1.75 m. It is known that the heights of the population are random variables that follow a normal distribution with a variance of 0.16.

Confidence Interval Formula = ( x̄ – z * ơ / √n) to ( x̄ + z * ơ / √n)

APA

  Confidence Interval Calculation Example

To calculate the confidence interval for the average height of the population, we’ll use the following values from your data:

  • Sample mean (x̄) = 1.75 m
  • Population variance (σ²) = 0.16, so standard deviation (σ) = √0.16 = 0.4 m
  • Sample size (n) = 400
  • Confidence level (assuming 95%) → z-value = 1.96 (for a 95% confidence interval)

Now, applying the confidence interval formula:

CI=(xˉ−z⋅σn) to (xˉ+z⋅σn)CI = \left( \bar{x} – z \cdot \frac{\sigma}{\sqrt{n}} \right) \text{ to } \left( \bar{x} + z \cdot \frac{\sigma}{\sqrt{n}} \right)

To calculate the confidence interval for the average height of the population, we’ll use the following values from your data:

  • Sample mean (x̄) = 1.75 m
  • Population variance (σ²) = 0.16, so standard deviation (σ) = √0.16 = 0.4 m
  • Sample size (n) = 400
  • Confidence level (assuming 95%) → z-value = 1.96 (for a 95% confidence interval)

Now, applying the confidence interval formula:

CI=(xˉ−z⋅σn) to (xˉ+z⋅σn)CI = \left( \bar{x} – z \cdot \frac{\sigma}{\sqrt{n}} \right) \text{ to } \left( \bar{x} + z \cdot \frac{\sigma}{\sqrt{n}} \right)

To calculate the confidence interval for the average height of the population, we’ll use the following values from your data:

  • Sample mean (x̄) = 1.75 m
  • Population variance (σ²) = 0.16, so standard deviation (σ) = √0.16 = 0.4 m
  • Sample size (n) = 400
  • Confidence level (assuming 95%) → z-value = 1.96 (for a 95% confidence interval)

Now, applying the confidence interval formula:

CI=(xˉ−z⋅σn) to (xˉ+z⋅σn)CI = \left( \bar{x} – z \cdot \frac{\sigma}{\sqrt{n}} \right) \text{ to } \left( \bar{x} + z \cdot \frac{\sigma}{\sqrt{n}} \right)

To calculate the confidence interval for the average height of the population, we’ll use the following values from your data:

  • Sample mean (x̄) = 1.75 m
  • Population variance (σ²) = 0.16, so standard deviation (σ) = √0.16 = 0.4 m
  • Sample size (n) = 400
  • Confidence level (assuming 95%) → z-value = 1.96 (for a 95% confidence interval)

    Confidence Interval Calculation Example

CI=(xˉ−z⋅σn) to (xˉ+z⋅σn)CI = \left( \bar{x} – z \cdot \frac{\sigma}{\sqrt{n}} \right) \text{ to } \left( \bar{x} + z \cdot \frac{\sigma}{\sqrt{n}} \right)